From Three-Dimensional Electrophysiology to the Cable Model: an Asymptotic Study

نویسنده

  • Yoichiro Mori
چکیده

Cellular electrophysiology is often modeled using the cable equations. The cable model can only be used when ionic concentration effects and three dimensional geometry effects are negligible. The Poisson model, in which the electrostatic potential satisfies the Poisson equation and the ionic concentrations satisfy the drift-diffusion equation, is a system of equations that can incorporate such effects. The Poisson model is unfortunately prohibitively expensive for numerical computation because of the presence of thin space charge layers at internal membrane boundaries. As a computationally efficient and biophysically natural alternative, we introduce the electroneutral model in which the Poisson equation is replaced by the electroneutrality condition and the presence of the space charge layer is incorporated in boundary conditions at the membrane interfaces. We use matched asymptotics and numerical computations to show that the electroneutral model provides an excellent approximation to the Poisson model. Further asymptotic calculations illuminate the relationship of the electroneutral or Poisson models with the cable model, and reveal the presence of a hierarchy of electrophysiology models.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlinear Cable equation, Fractional differential equation, Radial point interpolation method, Meshless local Petrov – Galerkin, Stability analysis

The cable equation is one the most fundamental mathematical models in the neuroscience, which describes the electro-diffusion of ions in denderits. New findings indicate that the standard cable equation is inadequate for describing the process of electro-diffusion of ions. So, recently, the cable model has been modified based on the theory of fractional calculus. In this paper, the two dimensio...

متن کامل

Numerical solution of base shear in high tensioned cable antenna

A finite element solution based on equevalent elements is proposed for the static and dynamic analysis of tallhigh tensioned cable antennas. To reduce high number of degrees of freedom in space frame body of a structure, a simple equivalent beam element is defined for each simulative substructure. This numerical procedure is applicable to analyze complex three dimensional assemblies of substruc...

متن کامل

Three-dimensional Vibration Suppression of an Euler-bernolli Beam via Boundary Control Method

In this paper, the general governing equations of three-dimensional vibrations of an Euler-Bernoulli Beam under influences of system dynamics are derived by the Hamiltonian method. Then two fundamental cases of a cantilever beam and a rotating beam are considered. The conventional methods for vibration suppression debit to expenses and make new problems such as control spillover because they ar...

متن کامل

Implicit RBF Meshless Method for the Solution of Two-dimensional Variable Order Fractional Cable Equation

In the present work, the numerical solution of two-dimensional variable-order fractional cable (VOFC) equation using meshless collocation methods with thin plate spline radial basis functions is considered. In the proposed methods, we first use two schemes of order O(τ2) for the time derivatives and then meshless approach is applied to the space component. Numerical results obtained ...

متن کامل

An asymptotic two layers monodomain model of cardiac electrophysiology in the atria

Numerical simulations of the cardiac electrophysiology in the atria are often based on the standard bidomain or monodomain equations stated on a twodimensional manifold. These simulations take advantage of the thinness of the atrial tissue, and their computational costs is reduce, as compared to three-dimensional simulations. However, these models do not take into account the heterogeneities lo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009